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An optimal control problem is analyzed for a linear system of ordinary differ- 

ential equations with random initial data and i~omogeneous terms, when the 
car&r01 performance index is an integral quadratic functional. At each instant 
the control parameter is chosen on the basis of an observation of the realized 
values of a specified set of random parameters of the system, Explicit expres- 
sions are derived for the optimal control functions aud the results obtained are 

compared with knawn earlier results. 

1, S t a t e m e n t o f t h e p r o b I e m, We consider the controlled system 

2‘ = 11 (t)s !’ R (t)u (t: 0) -t f (t, (0). z (0) = g (Q) (1.11 

(r G co1 (x1. * . .) xn}, IL (t, 0) zs co1 (&At (t, to), * * . 

I . ., urn (t7 of)) 

where T is the system’s state, u (t, 0) is the vector-valued control function. It is 

assumed that n ft) and B (t) are matrices of dlrne~o~ n X n and n k 172 ) 

respectively, with deterministic (L e., independent of the occurrence of 61) ) measur- 

able components uniformly bounded on the control interval IO, p’1 . The random 
initial data vector Zj ((a) and the random vector-valued function f (t, 4~) of in- 

homogeneous terms are taken as specified on a complete probability space (a, F, Pi 
and satisfy the constraint 

T 

Here M is the symbol for integration with respect to measure 
and the prime denotes transposition. 

As the loss ~n~tional we consider 
T 

P (the mean value) 

J(u)=+ \ ill - [.2.,c’ (3, w) c (s) x:,, (s, w) -+ IL’ (s, w) a (s) u (s, w)] ds (I.31 

where xu (s, w) k the solution of system (1.1). corresponding to control ~1 (s, o). 
lt is assumed that C (s) is a symmetric nonnegative definite n X n matrix and 
ff (s) is a symmetric positive definite M X m matrix. The elements of matric- 

es C (s), D (s) and D-l (s) are nonrandom measurable functions bounded for 

s E lo, rf . 
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We introduce the concept of the class u of admissible controls. By &‘, we 
denote the minimal f3 -subalgebra of CY -algebra P, relative to which the random 
vectors E (w) and f (s, w), s < t , are aggregate-measurable. The set {F,} 
does not monoto~cally decrease with respect to parameter t, i. e. , it forms a 
stream of IS -algebras. Let {E,} b e an arbitrary substream of this stream (E, C 
F,, t c.g [O, T]) and BE be the 6 -algebra of subsets of the product [O, T] xQ. 

the subsets being progressively measurable relative to flow (173,). _ Further, let L, 
(BE) be the Hilbert space of BE -measurable functions with the scalar product 

(cp? 11’) =- Al-f y ‘9’ (s, (Of 11 (s) + (SE, (1.4) 

0 

Then every element of space 
U 1 L, (BE). 

I& (BE) is called an admissible control, i. e, we set 

Let us explain the physical sense of the introduced definition: here the o -algebra 
Es is interpreted as a collection of the random events connected with the control 

system, which can be observed up to the instant t; the requirement of BE-measur- 
ability of control u (t, w) signifies that the magnitude u1 lo) of the admiss- 
ible control at each instant t is chosen with due regard to the information on the 

behavior of the system’s random parameters, contained in o -algebra Et. 
In practice the collection of observable events can be specified, say, by indicat- 

ing the set of observable random parameters of the system. 

Et = CT [%i (01, i = i,, . . ., iz; fh- (s, o), k = k,, . . ., kj, s E S (t) c 10, t]) 

In this case {see [l] ) the E, -measurable random quan~ty ut (of admits the 
representation 

where g, f-1 is some measurable (nonrandomf mapping of the space of ‘“trajectories” 

{Yr, . . a, Yl; 21 (*I, - . ., zj (.)I into the space R’n. visually demonstrating the ex- 

plicit dependence of the control function on the observation results. Note that by 

choosing the stream {E,) we can specify the most diverse classes of control functions. 
Thus, in the case of E, G {Q, 9) we obtain the class of deterministic controls (pro- 
gram control); in that of E, z F,_,, 6 > 0, we obtain control under lagging informa- 
tion, etc. 

The present paper is devoted to the problem of minimizing functional (1.3) on 
the class c’ of admissible controls introduced above, Closely related problems were 
studied earlier in a number of papers (see [2], for instance) on the additional assump- 

tion of process f having Markovian property. 

2. Exi 8 t enc e of the optimal con tr OL Following 131, a 
measurable random vector-valued function 5, (t, w) which almost surely satisfies 
for each t E 10, TI a system of integral equations corresponding to (1.1) is called 
a solution of system (1.1). 

L e m m a 1[3]. Under conditions of Sect. 1 system (1.1) with any admissible 
control has a unique (to within modification) BF -measurable solution 
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where @‘. (C) is the fundamental matrix of solutions of the homogeneous system 

J‘ = A (t)z. 

L e m m a 2. Under the conditions of Sect. 1 the optimal element u”: J (u”) 

< J (a), u E U , exists in the class of admissible controls. 

P r o o f. By (I.. 2) we have: J (0) = E < M. Consider the minimizing sequence 
{us) c U: al s 0, J (ZQ) 1 inf J (G), u E U. From (1.3) and (1.4) we have 

11 uk IfL = tuk, uk) i J (Uk) < C, k > 2 

Since a sphere of space L, (BE) is weakly compact, from sequence {sic} we can 

separate a weakly convergent subsequence: LL~ - u” E L, (BE). Note that since 
L, (BE) C E, (BE), the sequence (ul} is weakly convergent also in space L, (BE). 

Therefore, from formula (2.1) follows the weak convergence in L, (BE) of the sequ- 
ence x*r to QQ Since the integrand of functional (1.3) is a (downward) con- 

vex function of its arguments, from the results in [4] it follows that functional J is 
lower-se~con~u~ relative to sequence {II r} 

inf J (u) = !,“,J (u;) > Iim inf J (2~~) > J (L&O) 
UELT I--Pm 

But on the other hand, since u” E U, then J (~2) > inf J (u). 
UEC 

3. 0 p t i m a 1 i t y c P i t e r i a. L e m m a 3. For an admissible control 

u* to be optimal, it is necessary and sufficient that it satisfies the following integral 

minimum principle: 

ur; w (u) = H (u”) (3.1) 

H (u) - (rpo, u), “PO (t, w) =_ D-1 (t)B’(t)e, (t, 0) + u”‘(t, w) 

o. (t, w) G M ((cDot @))-I T a’,’ (s) c (s) x0 (s, o)ds 1 Et) 9 x0 E xuo 
t” 

Of {rl I El} is th e conditional mean value of random variable 11 relative to u - 
algebra E,). 

P r o o f. The necessity of (3.1) follows from the results in [S, 61. To prove the 
sufficiency of this condition, we assume that u” E U satisfies (3.1) and that Y is 

an arbitrary admissible controL We have 

2J (u) = M i [(s, - z’)’ C (xu - 9) + (u - no)’ D (u - u“)] ds + 
(3.2) 

0 
T 

2M 
s 

[(r”)‘Cz, + (LcO)’ Uu] ds - 2J (u”) s J1 + J, - 2J (uO) 
0 
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By virtue of the properties of matrices C and L) we have RI 2 0, where the equal- 

ity Jr = 0 is achieved only under the condition that u (t, 0) = u” (t, 61) for al- 
most all t and o. We transform I, by using (2.1) and (3. I). Changing the order 
of integration and allowing for the properties of the conditional mean value, we have 

J, = 2M i (s”)‘C~(j [4 + j aa-1 (Bu + f) dr] as + 2 (UO, U) = 
0 0 

@Oo-lBu (2s + 2 (IP, u) G 2 {al} + 2 (To, u) = 2ar + 2H (u) 

Analogously we obtain 
2J (u”) = c&l + H (UO) (3.3) 

Therefore, by virtue of (3.1) and (3.3), from (3.2) follows 

2f (u) >, c&r + H (ZP) + 2 (H fuf - H (Q)) ,, 2J (u9 

which signifies the optimality of control u”. Note that by virtue of the remark made 

above about the quantity J, , the assertion on the uniqueness of the optimal control 
is also derived from this . 

L e m m a 4, For an admissible control u” to be optimal, it is necessary and 
sufficient that the equality 

‘PO @* @) = 0 (3.4) 

be satisfied for almost all t and o . 

P r o o f, The sufficiency of condition (3.4) follows immediately from the preced- 
ing lemma. Now let d E U be the optimal admissible control. Let us assume that 

(3.4) is violated on a set of positive measure, i.e., II v. I > 0. We set u1 EZ y(po, 
where Y is a positive number. Using the admissibility of rP, it is easy to verify the 
admissibility of control ul. But then 

H (~1) = Y II ‘PO lr” < 11 (~7 

when Y < H (~“1 II TO lr2, which, because of (3, l), contradicts the optimality of 

control u”. 
We combine the results of Lemmas 1-4 in the following theorem. 

Theorem. The optimal control problem posed in Sect. 1 has a unique solution. 
The optimal control function (and only it) satisfies relation (3.4) for almost all t 
and co. 

4, A u x i I f a r y r e s u 1 t I. The following propositions will be henceforth 
repeatedly used. 

L e m m a 5. Let the numerical functions Q (t, w) and ra (6 z, a>; G 

z E IO, Tl 
the 0 -algeb&s 

w E Q , be measurable with respect to all variables relative to 
B x F and B X B X F (B is the o -algebra of Bore1 subsets 
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of interval LO, Tl) and integrable with respect to (t, o) and (t, T, 0) , respect- 
ively. Further, let {c,} b e an arbitrary flow of u -subalgebras, complete with 
respect to measure P , of o -algebra F. Then, a selection of variants of condit- 
ional mean values exists such that a) the function q3 (t, W) 3 M (‘7, (t, O) 1 c,} 
is progressively measurable relative to flow {C,} and integrable with respect to the 
variables (G 4; and b) that 

T 

Jqy %V, r, o)+t} = j M{qs(t, 

li 

z, 0) 1 CA dt 

0 

for almost all t and w 
The lemma’s proof follows directly from similar results in [l, 71. 

L e m m a 6. bet Y (t, o) be a solution ( in the sense of Sect. 2) of the syst- 
em of integral equations 

Y (t) = a (t, w) + j P (s) Y (s) ds 
0 

where P (s) is an n x n -matrix with measurable components uniformly bounded 
on [O, T] and o, (t, 0) is a measurable random vector-valued function with integr- 

able paths. Then 

Y (t, 0) = a (t, 0)) + Y (t) f T-1 (s) P (s) a (s, 0) ds 
0” 

almost certainly for each t E [O, Tl, Here Y (t) is the fundamental matrix of 

the system 2’ = P (t)x. 
The proof follows from the Cauchy formula if we take into account that Y = 

K + a, where K is a solution of the system K’ = PK + Pa, K (0) = 0. 

5. Construction of the optimal control, Weseek the 
optimal control in the form 

u” (t, w) = -P1 (t)B’(t)[G (t)M {x0 (4 w) I E,} + h (t, o)l (5.1) 

Here 2’ (t, a) is, as before, the solution of system (1. l), corresponding to control 
u0 (t, w), while G (t) is an n X n -matrix with deterministic measurable com- 

ponents uniformly bounded on [O, T] and h (t, o) is a BE-measurable integrable 
vector-valued function, both unknown as yet. Sub&taring (5.1) into formula (2. l), 

we obtain 

f(t, 0) = a(t, 0) + f P (s)z’(s, o)ds 
b 

z” (t, 0) z c~~--l (t) M (2 (t, o) 1 Et), P (t) = - @o-‘(t) r (t) G (t)@,(t) 

r (t) sz B (t) D-1 (t) B’ (q, a (t, w> z M{E (0) - S @o-‘[I’h--/IdslEt) 
0 

From this applying Lemma 6, we have 
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2’ (t, 0) = a (t, w) + Y (t) 5 Y-l (s) P (s) a (s, w)ds 
0 

using this formula, we can establish that when s > t 

M {z”(s, 0) 1 E,} = Y (s) Y-1 (t)z’(t, Co) + Iv {@ (t, s, 0) 1 E,} (5.2) 

f? (t, s, w) 5 a (s, w) - Up (s) V?(t) a (t, 0) + Y (s) f Y'-lPa dz 
i 

Since u” is the optimal control, by the theorem it satisfies relation (3.4). Using 
(5.2), from (3.4) we obtain 

uO(t, 0) = - D-l (t) B’ (t, [II (t) f (t* 0) + 12 (4 o)] (5.31 

rl(t)-((6,,‘(t))-1~**~(S)c(s)*o(s) Y (s)dsY-1(t) 
t 

T 

fz (t, 0) = @‘o (t)>-’ j @o’ (s) C (s) @o (s) 111 (/3 (t, s, o) 1 E,} ds 
t 

Comparing (5.1) with (5.31, we require the following equalities 

1, (t) = G (tN-+, (t), 1, (t, 0) = h (t, o) (5.4) 

to be satisfied almost certainly for each t . Differentiating the first of these aqnalit- 
ies with respect to t, we obtain for the determination of G (t) the known Riccati 
matrix equation 

G’ + (GA + A’G) - GI’G + C = 0, G (T) = 0 (5*5> 

Under the conditions in Sect. 1, a symmetric nonnegative definite matrix serves as its 
solution (see [l, 21, for example). Henceforth let G (t) be everywhere the solution 
of system (5.5). Using (5.2) and Lemma 5, we transform the second equation in 
(5.4) to the equivalent 

dl{~~,.(?C(s)[r(s)h(s. 0) -f(s, ti)]ds+ @,‘(t)h(t, o)j&} = 0 (5*6J 

Let the measurable random vector-valued function hr (t, W) make the express- 
sion m (5.6)under the sign of the conditional mean value vanish(almost cerbinly for each 

2). Then the BE-measurable vector-valued function h (t, CO) s &f (h, (t, 
a) 1 E,} (see Lemma 5) satisfies system (5.6). This can be proved by direct sub- 

stitution into (5.6) taking into acconnt that when s > t 

A+!#! @ (s, WI I Gf = Aif (h, (s, w) I E,} 

almost certainly. To determine function h, (t, a) we obtain the differential equa- 
tion system 

h,’ + (A’ - GJW, + W = 0, h, (T, w) = o 
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integrating which we find 

Here yO (t) is the ~~damen~l matrix of system 5. = (G1’ - A/)x. 
Repeating the preceding arguments, we can now establish that an admissible con- 

trol satisfying relation (5. l), where G (t) and h (t, CO} are the solutions of the 
first and second systems in (5.4), respectively, satisfies relation (3.4) as well, i. e, , 
it is optimal. Let us show that such a control indeed exists and let us find it in explicit 

form. From (5.1) and (2.1) we have the equation for IL’ 

tc‘ (t,, u) == - D-l (t) B’(f) / f; (t) @). (r) f d)u-1 (s) B (.s) uO(s, w) ds + (5.8) 
0 

?i @- o)l 

Assume that 6 (t, W) is a solution of the system 

8 (t, a) = - r’(t)[G (t)v (t, w) + y (t, w)l (5-9) 

u (t, 6)) = a$) (f) \ Q-l (s) 6 (S, o)ds 
it 

Then the function 

u0 (t, w) = ---n-l (QB’(t)lG @)v (t, CO) + y (t, o)! 

satisfies system (5.8), as can be verified by direct substitution, We reduce system 

(5.9) to the equivalent 

V‘ - (A - l?G)u -t_ I'y = 0, ~(0, w) = 0 

integrating which we determine the final expression for the optimal control 

u’(t, o) = D-"(t)B'(t)[G(t)!Yo'(t))--l [ Yo'(s)I'(s)y(s,o)ds-_yCt, ti)] (5*ro) 
fi 

6. E x a m p 1 e s, Let us consider certain concrete ways of specifying the flow 
{&f of observable events. 

Program control. Let E,z{0,Q}. In this case every admissible 
control is, with probability one, independent of the event. The control is effected on 
the basis of a p r i o r i information on the regulation system. From (5.7), (5.8) 

and (5,9) we have 
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T 

Y. (t) 

i 
\ ‘yo-1 (s) G (s) Mf (5) as 

u” (1, w) = u” (t) = D-1 (t) B’ (t) [G (t) (‘I’,,’ (t))-’ i Y,,’ (s) r (s) y (sj CZS - y (t)] > 
0 

almost certainly. 

M a r k o v c a s e. Let the initial data be nonrandom: 5 (0) s 5,,, but the 
vector-valued function f (t, w) be a Markov process satisfying the system of It8’s 

stochastic differential equations 

df = Z(t, j) dt + m (t, 0 dw, f (0) = f0 (6.1) 

where w (t, o) is an n -dimensional Wiener process on (Sa, F, P), I be an n -dim- 
ensional vector, m be an n X n -matrix. The functions Ii (t, z) and mij (t, CC), 
t E: [O, I’], z E I?“, are assumed to be such that the solution of system (6.1) possesses 

the transition probability density p_ct, Z; S, y) satisfying Kolmogorov’s inverse equa- 

tion (see [s]). Let us consider the control method when the whole path of process f 
is observed : Et f (3 If (s, o), s < tl. We have 

M If (S? 0) I Et) = M If b-9 a) If v, 0)) = (6.2) 

s ZP v, f (6 u)i s, 2) dz = a (9; t, f (f, 0)) 
Rn 

The function a(~; t, y) satisfies the equation (see [3] ) 
* 

n(s;t,y)=y+ z’(qY)g(s;TY)dr+ s t 
s 

$Tr m(f, Y) s t 

(6.3) 

(Tr stands for the trace of a matrix). We introduce the function 
T 

N (6 Y) = Y, (1) s Y,,-l (s) G (s) a (s; t, y) as 

for which, according to (6.2) and (5.7),’ we have 

N (t, f (t, 0)) = h (t, 01 

Using (6.3), we can show that this function satisfies the equation 

(6.4) 

-GI’)N+z’O, Y) ay 
A!!_+ -& Tr m (t, y) m’ (t, y) -$$ = 0, N (T, y)=O 

Taking into account that the solution 9 in the example being examined is consist- 

ent with flow (Et), from (5.1) and (6.4) we obtain the following convenient repres- 
entation for the optimal control 

ri’ (tl 0) = --D-l (t) B’(t) [G(t) x0 (t, o) + N (t, f (t, co))] 

We note that this result was known earlier (see [2] ). 
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Another representation for the optimal control can be obtained from (5. lo), if we 
take into account that in this case 

:’ (t, co) = G (t) CD,,(t) &, -I- ,f (I+,-1 (s) f (s. 01) ds + :V(f, f (t, co)) 1 
0 

The author thanks V. I. Plotnikov for discussions on the work. 
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